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The weak formulation of the incompressible Navier-Stokes equa-
tions in three space dimensions is discretized with spectral elemem
approximations and Gauss-lLobatto-Legendre quadratures. The
Uzawa algorithm is applied to decouple the velocities from the
pressure. The equation that results for the pressure is solved by
an iterative method. Within each pressure iteration, a Helmholtz
operator has to be inverted. This can efficiently be done by separat-
ing the equations for the interior nodes from the equations at the
interfaces, according to the Schur method. Fast diagonalization
techniques are applied to the interior variables of the spectral ele-
ments. Several ways to deal with the resulting interface problem
are discussed. Finally, a comparison is made with a more classical
method. © 1995 Academic Press, Inc.

1. INTRODUCTION

In the past years, the spectral element discretization of the
3D Navier—Stokes equations has received considerable atten-
tion [6,8, 11, 13, 18]. The advantages of this method are
numerous. The high degrees of the approximating polynomials
combined with high-order quadrature rules vield accurate solu-
tions. In comparison with more classical discretization methods,
a low number of degrees of freedom is needed for a prescribed
level of accuracy. The clustering of the gridpoints close to the
boundary, which is typical for many spectral methods, makes
the method attractive for flows dominated by boundary-layer
dynamics. The decomposition of the domain into several subdo-
mains (the spectral elements) ensures geometrical flexibility
and a natural implementation on parallel computers [6, 8).

There are many ways to uncouple the velocities from the
pressure. Karniadakis er al. {11] proposed a high-order splitting
method, where the pressure is computed by a Poisson equation
with compatible boundary conditions. Another way of dealing
with this problem is the Uzawa technique [1] which is in fact
a Gaussian elimination method by block. An advantage of this
approach is that the resulting system, which consists of four
positive (semi-) definite symmetric systems (one for the pres-
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sure and three for the velocities), is equivalent to the original
coupled set of equations. Hence, the system is determined by
velocity boundary conditions only and no additional conditions
for the pressure are needed. Usually, the four systems are solved
by the preconditioned conjugate gradient method (PCGM), an
efficient iterative method for symmetric systems of equations.
One of the attractive properties of the PCGM is that the matrix
system, which would take O(K,N¢) memory positions, is never
built up explicitly (K, corresponds to the number of subdomains
and N is the polynomial degree in one space dimension). More-
over, tensor producs reduce the bulk of the work, which consists
in the computation of matrix-vector products, to O(K.N*). A
disadvantage of the Uzawa method, however, is the high cost
required to compute the pressure. Since the pressure matrix
contains the inverse of a Helmholtz operator, a classical imple-
mentation requires two nested PCGMs, resulting in large com-
putation times. One way to deal with this problem is operator
splitting [15]. This method seems to work very well in practice,
although until now the consistency has not been proven for
increasing order of the time scheme.

This paper deals with another approach, first proposed by
Patera [14], that reduces rigorously the time to invert the Helm-
holtz operator and, hence, the time to compute the pressure.
To this end, the Schur complement method is used to separate
the Helmbholtz equations at the interior nodes of each element
from those at the inter-element interfaces. This leads to a set
of independent subproblems which is, in general, easier to solve
than the original global problem: Iterative methods tend to
converge faster due to the locally reduced number of variables
and the absence of inter-element coupling. Direct methods can
also be considered to invert the local Helmholtz operators, In
this paper, we will restrict ourselves to geometries consisting
of non-deformed spectral elements, In this case, a fast direct
method [12] based on tensor products of the eigenvalue/eigen-
vector decomposition of the one-dimensional operators is ap-
plied to the interior nodes. This direct method, which we will
often refer to as the diagonalization method, is very fast; the
inverse is computed at the price of two PCGM iterations. It is
not surprising that the fast diagonalization method (FDM) is
often used in the context of spectral methods (see, for example,
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114, 17]), where iterative methods tend to converge slowly due
to a large value of & and ili-conditioned matrices. The dimen-
sion of the corresponding Schur matrix is less by one than the
dimension of the original system, since it involves the interface
vanables only. Therefore, we might consider classical direct
methods as well as iterative methods. In the latter case, the
conjugate gradient method can be efficiently preconditioned by
block Jacobi. Moreover, an impressive improvement on vector
computers can be obtained when the Schur matrix is constructed
explicitly. In this way, we avoid the evaluation of tensor prod-
ucts, which is inefficient in terms of vectorization. Indepen-
dently of the solution method for the Schur matrix, we found
that the new algorithm is an order of magnitude faster than the
classical one.

The outline of this paper is as follows. First, in Section 2,
we briefly present the spectral discretization of the Navier—
Stokes equations. In Section 3 we discuss the FDM and in
Section 4 we treat the Schur method for a particular problem.
Section 5 will deal with two test problems and comment on
the parallelization of the method.

2. DERIVATION OF THE PISCRETE EQUATIONS

The 3D incompressible Navier—Stokes equations are dis-
cretized by the spectral element method. For more details
about the material of this section, we refer the reader to the
article of Maday and Patera 113] and to the lecture series
by Renguist [18]. The Navier—Stokes problem is formulated
as follows: Find velocities u and pressure p in a domain
C @ such that

%*Rﬁ_IAH+U'V\l+Vp:b, 1))

—divu =0, {2)

with t € [0, T..]. At the boundary 3£} of the domain (2, we
impose Dirichlet boundary conditions for the velocity:

u=g onall (3)

Here, Re = [/L/vis the Reynolds number based on a character-
istic velocity, length, and kinematic viscosity. Furthermore, b
is a force vector and g contains the Dirichlet boundary condi-
tions. The extension to Neumann or mixed boundary conditions
is straightforward. As a starting point for the spectral element
discretization, we use the variational equivalences of (1}-(2):
Find (u, p) in X, X M such that Yw € X,, Vg E M,

(%%, w) + Re (Vu, Vw)

4
+(u-Vu,w) — (p,divw) = (b, w)
—(g,divu) =0, (5
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where
VEHELNQ) (60)= [ duxIdx xEQ. (6)

The space £ %({}) is the space of all square integrable functions
over (). The space X, for the velocity, the space X, for the
test functions, and the space M for the pressure are defined
as follows:

X, = {v €| %YQ))3, v satisfies boundary conditions} (7)
X, = {v €% ())?, v vanishes at 3%} (8)

M=) = {2y [ pmax=01  ©

Expression (9) should be interpreted as an averaging procedure
for the pressure. ¥'({)) is the space of all square integrable
functions whose first-order derivatives are also square integ-
rable over (1.

The first step in the discretizaton process is to subdivide the
domain O = 8§} Q into K, non-overlapping rectilinear elements
Q, such that the intersection of two or more neighboring ele-
ments is either a face, an edge, or a vertzx. In order to simplify
the notation, we assume that the number of nodes N is equal
in each direction and on each element. Of course, this does not
affect the general concept. Next, we have to define the discrete
polynomial subspaces X, C X, and M, C M, in which the
velocities and pressure will be approximated, respectively. In
order to avoid spurious pressure modes, Maday and Patera [13],
and Bernardi and Maday [2] proposed the use of the subspaces

(10)
(11)

X = X, NPy (V)

My=MN QDN—LK'('Q)*

with Py = {¢ € £(Q); ¢, is a polynomial of degree less
than or equal to N}. Consequently, the space X, 15 defined as

Xop=Xs N @13\&1(,(0')- (12)

The choice for the spaces (10)—(11) implies the introduction
of staggered grids. In our case, the velocities will be approxi-
mated on a Gauss—Lobatto—Legendre grid, whereas the pres-
sure will be approximated on a Gauss—Legendre grid. Further-
more, the velocities are continuous along the element
boundaries {while the pressure is not necessarily continuous).

The spectral element discretization proceeds by the applica-
tion over each subdomain of two Gaussian integration rules,
corresponding to the two grids mentioned above. We should
remark that the three-dimensional rules are obtained by tensor
products of the one-dimensional formulas.

The final step consists in the discretizarion in time. In this
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paper we conline ourselves to a simple time scheme. We choose
backward Euler for the viscous term, where the convective
terms at time t,,; are approximated by an explicit time-integra-
tion method. The third-order explicit Adams—Bashforth scheme
has been applied for its advantageous stability characteristics;
the overall order is one. We write the discrete equations immedi-
ately in matrix notation, where we use the same symbols as in
[13, 18],

LB“;H—I + Re—]Au;x+l _ Dijn-i-l = Bf:_:+],

Al i=1273.

(13)

- Dt =0, (14)
Here, B is the diagonal mass matrix, A is the discrete Laplace
operator, D); is the discrete divergence operator, and the super-
script T indicates the transpose. The right-hand-side vector £
contains the volume force b**! and the explicit terms.

The Uzawa algorithm is applied to uncouple the velocities
from the pressure. This technique was originally designed for
finite element computations, but is nowadays used in spectral
element computations as well (see [13, 18]). The attractive
property of the Uzawa method is that the uncoupled system,
which consists of four positive (semi-)definite, symmetric sets
of equations, is equivalent to the original system. Starting from
the discrete equations (13)—(14), the Uzawa algorithm is ob-
tained by multiplication of the momentum equations by
D.H™', with

H= (ReilA + AI*]B)_ (15)
We obtain

—D,‘H_ID?P"H = D;H“]Bff”'] (16)

Hu'=DIp™' + Bf*, i=1,2,3. (17

Equation (16) is solved by the PCGM. Clearly, the Helmholtz
operator H has to be inverted within each PCGM-iteration. This
can efficiently be done by the Schur complement method in
combination with the FDM, which will be discussed in the
following sections.

3. THE FAST DIAGONALIZATION METHOD

For a tensorizable and separable operator it is possible to
explicitly construct an inverse having a similar tensor product
structure. Under certain conditions, which we will discuss later,
H is such an operator. According to Lynch et al. [12], we
can write

H'=P@P,QPURIQA +IRAR]

18)
+ARQIQN'PIRPIIQP]. (
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FIG. 1. Geometry consisting of four spectral elements. Projection in

y-direction (y = 7).

Here, A & B denotes the tensor product of A and B, and A,
A,, and A, are the diagonal matrices of eigenvalues arising
from the (1D) generalized eigenvalue problems Hu = Ax in
X-, y-, and z-directions. The matrices P., P;, and P, are the
corresponding matrices containing the eigenvectors. The inter-
est in this method becomes clear when the cost of an evaluation
of H™'v is compared to the matrix-vector multiplication Hv,
the basic ingredient of any iterative method. Using (18), H'v
requires 6N* multiplications, whereas Hv takes 3¥* multiplica-
tions. So the inverse is computed at the price of two matrix-
vector products.

Many authors have used this fast diagonalization technique
in the context of spectral methods, e.g., [9, 10]. Streett and
Hussaini [17] describe the application of this method to the
Uzawa technique. All these papers are based on mono-domain
computations. On the one hand this restriction seems obvious,
since the condition that the operator should be separable, does
not allow non-rectangular geometries. If the interface and
boundary variables, however, are eliminated, we can use the
FDM for the interior nodes of cach spectral element, provided
that these elements are rectangular. Note that, in fact, H is not
a separable operator due to a multiplication by the weights.
Therefore, we solve the equivalent problem (HB ')}Bu = f
instead. To avoid complex notation, this diagonal shift is not
explicitly represented in this paper. In the next paragraph we
will describe the Schur complement method which separates
the interior variables from the interface variables. In this way,
we can take full advantage of the FDM.

4. SCHUR COMPLEMENT METHOD

4.1. Construction of the Schur Complement

The use of the Schur method is a common practice in modern
numerical mechanics. The reduction of the problem to a set of
subproblems often leads to memeory savings and faster algo-
rithms. Moreover, these subproblems can be solved indepen-
dently, leading to a high degree of parallelism. Another argu-
ment is that different solvers can be applied to the interior and
to the interface variables. In our case, the latter reason is the
most important, although we will also discuss a parallel imple-
mentation in Section 5.3.

In order to explain the Schur method, we consider a domain
as depicted in Fig. 1. The parallelepipedic domain {2 is decom-
posed into four spectral elements £2,, {;, {5, and (). The first
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three elements are of size [0, 1] X [0, 2] X [0, 1], but the
fourth element is two times as large in the x-direction. The
interfaces T, T, and T, are defined as T, = &, N §,, T, =
0,N 0, and T, = O, N Q,. Boundary variables are assumed
to be eliminated. We introduce the following notations for the
unknowns u and the right-hand side f: fi, u, € Q,, i, u; €
D, fows €, fi, e fou. €T, frou, €10, and £,
u. € I'.. The Helmholtz equation Hu = f can be written as

H, 0 0 ¢ H, 0 0 ) f
0 Hy, O 0 HyHy O i b
0 0 Hy 0 0 Hy H, it fi
0 0 0 H, 0 0 H, e | = | fa (19)
H,H, 0 0 H,H, 0 U, fa
9 H,; H, O H, H, H, Uy J
0 0 Hy;H, 0 Hy H.| \u fe

The following notations have been used:

H;, discretization of the Helmholtz operator on subdomain
i (internal nodes)

H;,, coupling between the unknowns for subdomain i and
interface o

H,,, coupling between the unknowns for interface « and
subdomain §

H.g, coupling between the unknowns for interface o and
interface 3.

We have that H, € RNN [ e RV and H., € NN
i€ {l,2 3, 4} o B € {a, b, c}. Moreover, it can be shown
that H,, = Hy; and H,g = H},. Elimination of the variables at
the interior nodes leads to the following system, often called
the Schur complement:

(Hoe — HyHi'Hyy — Ho HY Hou, + (Hoy — Hy Hy Hyuy
=fi— HaHi'fi —HaHD f
(Hew — HypHy Hy — Hys Hi Hyyuy + (Hy, — HypHy' Hy, u,
+ (Hye — HiH3 Hyu. = — HoH3' fy — HpaH
(Hee = HoHG Hy — HoHy Hac ju. + (Hey — HaH3 Hyy )ity
=f.— HuH3fy — HaHEfi.
(20)

System (20} shows that the unknowns of the three interfaces,
although they do not have any node in common, are coupled
in a direct way. Moreover, the appearance of the matrices H,.p
{a # 8) is due to the high-order approximations and is absent
in classical discretization methods, as the finite element or the
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finite difference technique. Schematically, the Schur comple-
ment of our example has the form

Oonogo U,
0 o4 uy | =rhs., (21)
0 O O i,

where the square box [J represents an N? X N? full block
matrix. The FDM is used to evaluate the expressions H7;'f; in
the right-hand side of (20) and to compute the variables at the
interior nodes:

Hyuy = —Hyju, + fi

Hyuy = —Hypu, — Hyuty + fo
(22)
Hyuuy = —Hyuy — Hyu, + fi

H44u4 = '—H4CHC +f‘4.

In case of a more general (curvy) geometry, the Schur comple-
ment method can still be useful. Although the FDM does not
apply anymore, the inverse of the Helmholtz operators can be
computed by a classical direct method or by an iterative method
preconditioned by finite elements [5]. The advantage is that
these computations are decoupled per element.

The Schur complement probiem (20), involving the interface
variables, can be solved either by a direct or by an iterative
method, In the case of a direct method, it is clear that the
implicit, tensorized form in which the Schur matrix (20) is
written, should be replaced by an explicit formulation. It is also
interesting to construct the matrix explicitly when an iterative
method, like PCGM, is used. This becomes clear when we take
a closer look at the block-matrices that form the Schur matrix.
Using expression (18) to evaluate H ;' and H3, the number of
operations to multiply one of the block-matrices, for example,
(Ho — HyHi'Hy, — HHE Hy), is 17N, When this block
is constructed explicitly, the operation count of a block-vector
multiplication is reduced to N, Moreover, since the explicit
formulation does not contain tensor products, block-vector
products can efficiently be computed on vector computers. It
can be shown that the price to construct these blocks is O(N?).
This computation is done once and for all in a preprocessing
stage, so that its cost will be amortized.

4.2, Preconditioning

Let us first discuss the preconditioning of the original Helm-
holtz operator H. The condition number of this operator depends
on Ar. For small values of Ar, the operator H = (Re™'A +
At™'B) tends to the diagonal matrix B, containing the Gauss—
Lobatto-Legendre weights. For larger values of Az, the Lapla-
cian A becomes dominant. The matrix B~'A is ill-conditioned,
since its condition number is proportional to N* [18]. A precon-
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ditioner that works well for small and large values of At is the
diagonal of the Helmholtz matrix H. This preconditioner is
used when we compare the new method to the classical one.
Alternatives could be a preconditioner based on the incomplete
Choleski [13] or the finite element method.

In this paper, however, we are not concerned with the precon-
ditioning of the Helmhoitz operator, but with the associated
Schur complement. Although the condition number of the Schur
matrix is smaller than that of the original system, precondi-
tioning is still essential. Many preconditioners have been pro-
posed in the literature, e.g., [3, 4]. In this paper, we will consider
two preconditioners; the inverse of the diagonal of (20) and
the block diagonal matrix, which has as entries the inverse of
the diagonal blocks of (21). The first preconditioner is easy to
construct and its cost per multiplication is negligible, but its
efficiency is low, as will be shown later. The effect of the block
diagonal preconditioner, also called biock Jacobi, is impressive.
A question, however, is whether the price to construct this
preconditioner (K, matrices of dimension N? X N? have (o be
inverted) is not too high, especially when compared to the
inversion of the complete system (20). For this simple, four-
element problem this might indeed be the case, but it is interest-
ing to compare the cost for a larger number of interfaces. Let
us define the number of interfaces by K. Taking into account
that the block matrices on the diagonal are symmetric, comput-
ing the preconditioner requires K,;N®/6 operations, whereas
the inversion of the complete Schur complement requires
K3 N6 operations. Hence, the iterative method becomes attrac-
tive for larger K;. The construction of the preconditioner is
performed once and for all and the cost is spread out over
hundreds of pressure iterations.

In order to give some heuristics about the spectrum of the
Schur complement and of the Schur complement premultiplied
by the diagonal and the block-diagonal preconditioners, we
computed the condition numbers of these three operators for
different values of K;, N, and AtRe™*, Table I represents the
results for a geometry with dimensions [0, 1] X [0, 4] X [0, 1],
with respectively 4, 8, and 16 elements in the y-direction and
one in the remaining directions. For this particular mesh, the
Schur complement is tridiagonal by block. We remark that the
results representing a Navier—Stokes simulation (Az = 0.01,
Re = 10) give rise to condition numbers close to one. Moreover,
they seem to be more or less independent of the number of
interfaces. For At = 0.25, Re = 1, we see that the condition
nomber of the Schur complement, for a fixed vaiue of K;, is
of order O(N?). The diagonal preconditioner seems to reduce
the condition number to O(N) and the block-diagonal precondi-
tioner yields a condition number that is independent of N. There
is no obvious relation between the spectrum and K, other than
that the condition number grows as K, increases.

Although the construction of an efficient preconditioner for
the pressure operator (16) is beyond the scope of this paper,
we make the following remarks: for large values of Az, this
operator is well conditioned and can be preconditioned by a
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diagonal matrix containing the Gauss—Legendre weights. The
problem is much more difficult for small values of Ar. In a
recent paper, Ranquist [16] proposes a preconditioner based
on the decomposition of the pressure system into two pressure
systems. Here, we confine ourselves to the simple diagonal
preconditioner based on the Gauss—Legendre weights.

5. COMPARISON OF DIFFERENT METHODS

5.1. Numerical Results for a Simple Test Problem

The new algorithm, based on the Schur method and the direct
inversion is compared to the classical one, where the complete
Helmholtz equation is solved by the PCGM. The difference
between a direct and an iterative method in solving the Schur
complement is examined. Moreover, in the case of an iterative
solver, the performance of the preconditioners is investigated.
The tests have been run on a Convex C3820 vector computer.
Every program has been compiled with and without vector
optimization. The routines that perform the multiplication by
the Schur complement or by the inverse of the Schur comple-
ment (in the case of an iterative or direct method, respectively)}
are written in BLAS.

As a test problem, we have taken the Stokes flow, in which
the non-linear terms in (1) are neglected. The geometry is given
in Fig. 1. The degree of the approximating polynomials is equal
to 10 for the velocities and 8 for the pressure, K, = 4 and
K, = 3. The analytical solution is given by

T . fm
wix,, Xz, x1) = (*cos (Ex,) sin (Eh), 0,
i (7 7Y
sin 2x1 cOos 2x3
(x ) = —msin ul sin 7
PlX, Xz, X3 le 2X3 .

At t = 0, the fluid is at rest and the boundary conditions match
the analytical solution. After 10 time steps (At = 0.5) a steady
solution is obtained. Four different methods are compared: The
classical iterative (CI) method, the direct Schur complement
(DS) method, the iterative Schur complement method precondi-
tioned by the diagonal (ISD), and the iterative Schur comple-
ment method preconditioned by the block-diagonal {(ISB). Table
IT shows the results of the runs without vector optimization.
The accuracy of the four methods is of the same order, We
found a maximum emor of 3 X 107 for the pressure and of
8 X 1077 for the velocities. The speed of the three methods
which are based on the Schur method (DS, ISD, and ISB) is
much higher than that of the classical method. Furthermore,
we note that the direct inversion of the Schur complement (DS)
is faster than in the iterative methods (ISB and ISD). Finally,
preconditioning with the block-diagonal matrix is preferred to

(23)
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TABLE I

Condition Number of the Schur Complement (CS), the Schur Complement Premultiplied by the Diagonal Preconditioner
(D"'CS), and the Schur Complement Premultiplied by the Block-Diagonal Preconditioner ((BD)~'CS) for Different Values of

K, and N
Ar = (.25, Stokes Ar = 0.0), Re = 10

K N Cs D'Cs (BDY"'CS CS D-'CS (BD)"'CS
3 5 2.66 2.45 1.02 1.10 1.09 1.00
3 7 4.61 3.67 1.02 1.29 1.22 1.00
3 9 7.36 4,92 1.02 1.57 1.36 1.00
3 11 10.94 6.19 1.02 1.98 1.54 1.00
7 5 2.88 2.68 1.38 1.08 1.08 1.00
7 7 5.13 4.14 1.38 1.21 1.16 1.00
7 9 8.27 5.63 1.38 1.47 1.30 1.00
7 1 12,34 7.14 1.38 1.89 1.50 1.00
15 5 4.84 4.60 3.29 1.07 1.06 1.00
15 7 793 6.50 3.29 1.19 1.15 1.00
15 9 12.68 8.67 329 1.46 1.30 1.00

the diagonal preconditioner. We found that, for any Schur
method, the preprocessing time (construction of the Schur com-
plement and preconditioner, eigenvalue decomposition of
mono-dimensional operators necessary for fast diagonalization)
is less than 2 s.

The results for the vectorized programs can be found in Table
II1. We note that, as expected, the Schur methods benefit more
from vectorization than the classical method. The difference
between the methods DS, ISD, and ISB has almost completely
disappeared. This can be explained as follows: The time for
the computation of the interfaces has become negligible with
respect to the computation of the interior nodes, which, due to
the tensor products, does not vectorize well, An analysis of the
distribution of the cpu time over the different subroutines re-
veals that, for this particular problem, the ISB method spent a
considerable amount of time (about 47%) to compute the inte-
rior nodes by FDM, whereas the interface routines took only
5%.

5.2. Numerical Results on an Eight-Element Geometry

In this paragraph we consider a more complex geometry,
consisting of the cube [0, 1]* with a hole in the center [0.4,
0.6] X [0, 1] X [0.4, 0.6]. The number of spectral elements is

TABLE 1I

Timings in Seconds after 10 Time
Steps for the Test Problem without
Vector Optimization

Method CI DS ISD ISB

Seconds 2637 191 330 223

eight (K; = K, = 8) and the polynomial degree is 10. Figure 2
shows a projection of the cube in the y-direction. Homogeneous
Dirichlet boundary conditions are applied everywhere, except
at the top plane (z = 1), where u; = 16xy(x — 1)(¥ — 1). The
Schur complement that results after elimination of the interior
nodes is somewhat more complex than that of the four-element
matrix (20). We will refrain from giving the full system and
give, as an example, the equations at the interface a,

(Hyp — HaHUHY — HoHy' Hu, + (Hy — HpHE Hip)u,

— H, Hi'Hfw, =fa— HalHl_]lf} —HyHYf,. (24)

The equations at the other interfaces are given by similar expres-
sions, since the geometry is symmetric with respect to the
interfaces. Schematically, the Schur complement can be written
in the form

Uy
Uy
U,

Ug
= r.hs. (25

i,

Wy

Ug

0o oc o o OO
o o o o o OO
o o oc o000 e
o c o JO0O o <
c o000 = o
OO0 o o @ o <o [

c 000 <o = <
OO0 0 e c o o

iy

System (25) illustrates that for large K direct inversion of the
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TABLE I

Timings in Seconds after 10 Time
Steps for the Test Problem with Vector
Optimization

Method Cl DS ISD ISB

Seconds 1565 105 114 111

Schur complement is not a good idea (see discussion in Section
4.2). Therefore, an iterative method (ISB) is preferred.

Table IV compares the cpu time of the ISB and CI methods
for the first time step of a Stokes flow and a Navier-Stokes
flow (Re = 100, where the characteristic velocity U equals
one). Again, the new algorithm is much faster than the previous
one. The large differences between the computation times for
the Stokes and Navier—Stokes problems can be explained by
the fact that for small values of At more iterations will be needed
to compute the pressure, whereas the Helmholtz operator is
well conditioned, resulting in a low number of internal itera-
tions, as is illustrated by the last line of Table IV.

5.3. Closing Remarks

In Fischer et al. [6] and in Fischer and Patera [§], the paralleli-
zation of the classical CI method is discussed. Large computa-
tional kernels, like the computation of gradients and the multi-
plication by the Helmholtz operator H can be performed in
parallel on each spectral element.

The parallel efficiency of our method will not differ very
much from that of the original method, at least when computers
based on shared memory are considered; the additional compu-
tational kernels can naturally be parallelized. The work to con-
struct the Schur complement method and its preconditioner can
be divided over different processors. Clearly, the computation
of the interior nodes by FDM can be done independently on
each element. Finally, when an iterative method is used to solve

1| J 3 z y

a b X

FIG. 2. Geometry consisting of eight spectral elements. Projection in y-
direction (¥ = 0.05). The sets of intcrior nodes are enumerated [ ... 8; the
interfaces a ... h.
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TABLE IV

Timings in Seconds after One Time Step for the Eight-Element
Problem on a Convex 3820 using Vector Optimization

Navier-Stokes

Stokes Re = 100,

Ar =05 Ar = 0.005
Method CI iSB Cl ISB
Seconds 702 40 670 140
Average number of iterations 87 18 17 6

Note. The average number of iterations (tolerance 107'7) is given per
Helmbholtz sclve (CI} or per solve of the Schur complement (ISB}.

the Schur complement system, the matrix-vector multiplication
is split in block matrix-vector operations. In Table V we give
the results on the parallel Alliant FX/8 for the Stokes and
Navier—Stokes problems, defined in the previous paragraph.
The parallel efficiency is about 85% for the Stokes and 80%
for the Navier—Stokes.

On distributed memory computers, where communication is
an issue, the Schur method might have a disadvantage compared
to the original CI method. According to Fischer er al. [6], the
latter method only requires the communication of scalars (to
assemble the dot product) and points at the interfaces (for the
direct stiffness). The interfaces are only exchanged between
neighboring elements. In our case, the FDM and the construc-
tion of the preconditioner are communication {ree. The con-
struction of the Schur complement matrix requires some com-
munication, but this is done only once in a preprocessing stage.
The difficulty is related to the implementation of the iterative
method to solve the Schur complement. Since the Schur matrix
is in general not block diagonal (see, for example, (21), (25)),
the interface variables have to be exchanged between proces-
sors. In the case of system (25), for instance, «, and #, have
to be sent to the processor that computes the first row. The
time to send these O(N?) messages can be relatively large with
respect to the fast block matrix-vector multiplication, which is

TABLE V

Timings in Seconds after the First Time Step for the Test Problem
on an Alliant FX/8

Navier-Stokes

Stokes Re = 100,
Ar =05 Ar = 0.005
Mode Vec Vec + par Vec Vec + par
No. of proc. 1 4 1 4
Seconds 544 160 1694 532

Note. The method used is ISB.
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of order O(N'*). Preliminary results show that the performance
of the iterative solver depends heavily on the architecture of
the parallel distributed memory computer.

The algorithm we investigated in this paper leads to an im-
portant acceleration of the Uzawa algorithm applied to the
discrete Navier—Stokes equations, Since the conditions for the
FDM are very restrictive, the present method can only be ap-
plied to geometries consisting of non-deformed spectral ele-
ments. This is a serious limitation. However, since the Schur
method decouples the global Helmholtz operator H in K, local
operators F;, classical direct methods can also be considered.
Once the inverses H;' (or the LL™ decomposition) have been
computed, the Schur complement matrix can be constructed,
vielding no extra computational effort to solve the Schur com-
plement problem, apart from a higher preprocessing cost. The
decoupled problems for the interior nodes (Hj;i;= r.h.s.) can
be solved either by multiplication by the local inverse (or by
back substitution) or by an iterative method preconditioned by
finite elements [5]. Fischer and Re@nquist [7] already showed
in the context of preconditioning of the pressure operator that
the construction of local inverses by a classical direct method
is feasible and advantageous in terms of computation times.
Both the parallelization on distributed memory machines and
-the implementation of deformed geometries will be the subject
of future research.
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